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Our understanding of the biologic effects (including toxicity) of
nanomaterials is incomplete. In vivo animal studies remain the gold
standard; however, widespread testing remains impractical, and the
development of in vitro assays that correlate with in vivo activity has
proven challenging. Here, we demonstrate the feasibility of analyzing
in vitro nanomaterial activity in a generalizable, systematic fashion.
We assessed nanoparticle effects in a multidimensional manner, using
multiple cell types and multiple assays that reflect different aspects of
cellular physiology. Hierarchical clustering of these data identifies
nanomaterials with similar patterns of biologic activity across a broad
sampling of cellular contexts, as opposed to extrapolating from
results of a single in vitro assay. We show that this approach yields
robust and detailed structure–activity relationships. Furthermore, a
subset of nanoparticles were tested in mice, and nanoparticles with
similar activity profiles in vitro exert similar effects on monocyte
number in vivo. These data suggest a strategy of multidimensional
characterization of nanomaterials in vitro that can inform the design
of novel nanomaterials and guide studies of in vivo activity.

cluster analysis � molecular imaging � nanoparticles

The expanding use of nanomaterials has spurred interest in
defining their biologic effects (1). Traditionally, the in vivo

biologic and toxic effects of nanomaterials have been revealed
via animal studies. For instance, single-wall carbon nanotubes
cause pulmonary granulomas upon intratracheal instillation in
rats and mice (2, 3). Although extremely informative, animal
studies are costly and labor-intensive and thus ill-suited to
systematically explore the sheer number of potential nanoma-
terial variables that can influence in vivo activity (including size,
core material, coating, surface functionalization, and nanoscale
and physicochemical properties). In vitro assays in cultured cells,
although unlikely to substitute for animal studies, could help
dissect structure–activity relationships and suggest nanomateri-
als likely to have favorable in vivo activity (4).

Although numerous studies have used cultured cell models to
examine nanomaterial toxicity, extrapolating from in vitro to in vivo
activity remains challenging. In addition to the complexities of in
vivo pharmacokinetics and bioavailability, cellular phenotypes
(such as the repertoire of expressed proteins) can change signifi-
cantly during in vitro cell culture (5); furthermore, nanomaterials
may show significant in vitro toxicity in one cell-based assay but not
others (6). Most commonly, these in vitro efforts have evaluated
nanomaterials based on a single cell line and by using a limited
number of phenotypes (often a single assay). This makes any
conclusions critically dependent on the particular choice of cell
model and assay and offers a relatively narrow view of the poten-
tially pleiotropic ways in which a nanomaterial can modulate living
systems.

We sought to develop a generalizable systematic approach that
would provide a more comprehensive view of the biological
effects induced by a nanomaterial and improve correlations with
in vivo observations. In this approach, the biologic activity of a
nanomaterial is assessed by multiple physiologic cell-based as-

says, in multiple cell types, and at multiple doses. Each nano-
material (NM) can then be characterized by a profile P(NM) �
{Zijk}, in which each feature is the normalized assay result Zijk
that results when the nanomaterial is added at dose i to cell type
j, and its effect is measured using assay k. Each profile is thus
composed of (i � j � k) features. This profile samples a much
broader swath of biology than is accessible by characterizing a
material in a single cell type and using a single phenotype.
Clustering methods can then classify nanomaterials into groups
based on similarities in their profiles (i.e., based on similarities
in their patterns of biologic effects in many different cellular
contexts). This approach is analogous to the use of gene expres-
sion data to discover novel classifications among tumor samples
(7) but with cell-based physiologic measurements in place of
levels of gene expression. Furthermore, the use of multiple cell
lines (vs. a single cell line) has yielded novel insights into
mechanisms of anticancer drug action and resistance (8, 9).

Because the unit of comparison among nanomaterials is a profile
that reflects multiple cellular assays and cell types, the goal of this
analysis is not to extrapolate from the results of a particular in vitro
assay to a specific in vivo phenotype. Rather, the goal is to analyze
the broad patterns of activity of the nanomaterials relative to one
another, and identify nanomaterials that cause similar biologic
effects; one can then test whether nanomaterials with similar
activity in vitro also behave similarly in vivo.

As a proof-of-concept for this approach, we evaluated 50 differ-
ent nanomaterials at four different doses in four cell types, using
four physiologic assays. We demonstrate that this high-
dimensionality analysis results in different relationships among
nanoparticles compared with those ascertained by more limited
data subsets. The data also reveal how alterations in nanomaterial
composition (e.g., core composition, coating, and surface function-
alization) can modulate biologic activity. Equally important, we
further evaluate three commonly used nanoparticles in vivo (by
measuring changes in monocyte number after i.v. injection), and
demonstrate that their relative in vivo phenotypes correlate with
their in vitro profiles.

Results
Nanomaterials and Experimental Conditions. The 50 nanomaterials
analyzed possess varying core compositions, coatings, and surface
attachments. We focused primarily on nanoparticles used for
molecular imaging and nanosensing because of their potential
widespread use in medical applications (10) and because prepara-
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tions approved for human use can be used as reference materials.
The nanoparticles (NP) belong to five categories or platforms: (i)
cross-linked iron oxide (CLIO)-based, consisting of a superpara-
magnetic iron oxide core and a covalently cross-linked dextran
coating (NP1-NP23) (11); (ii) pseudocaged nanoparticle (PNP)-
based, containing either superparamagnetic or para/dia-magnetic
iron oxide cores and a variety of polymer coatings (NP26-NP44);
(iii) monocrystalline iron oxide nanoparticle (MION)-based, con-
sisting of a superparamagnetic iron oxide core and an incomplete
non-cross-linked dextran coating (NP45-NP48) (12); (iv) quantum
dot-based, with a CdSe core, a ZnS shell, and a polymer coating
(NP49-NP51) (13); and (v) the following iron-based nanoparticles
approved for human use: Feridex IV (approved for in vivo imaging,
with a polydisperse superparamagnetic core and incomplete dex-
tran coating) (NP24) and Ferrum Hausmann (approved for iron
supplementation, with a Fe(III) (OH)3 core and sucrose coating)
(NP25) [see supporting information (SI) Table S1 for details].

We chose to evaluate each nanomaterial under all possible
combinations of the following conditions (Fig. 1): (i) 4 concentra-
tions over a 30-fold range (0.01 to 0.3 mg/ml Fe for iron-based
nanoparticles; 3–100 nM for quantum dots) that span the range
typically encountered in in vivo applications; (ii) the following four
cell types, selected for this experiment to reflect a range of tissues
relevant for evaluation of the intravascularly administered agents:
vascular cells (endothelial and smooth muscle cells), monocytes
[which take up many nanoparticle imaging agents (14)], and hepa-
tocytes (because of the importance of hepatotoxicity in evaluating
novel agents); and (iii) the following four cell-based assays that are
widely used, amenable to high-throughput data collection, reflect
complementary aspects of cellular viability and physiology, and
have been used to assess nanomaterial toxicity: ATP content (15),
reducing equivalents (16), caspase-mediated apoptosis (15), and
mitochondrial membrane potential (17).

The entire dataset comprises measurements from �24,000 wells,
including control and replicate wells. Each measurement was made
in quadruplicate; assay values are expressed in units of standard
deviations of the distribution obtained when cells are treated with
PBS alone (Z score). The Z scores in the dataset (depicted in the
heat map in Fig. 1) skew slightly toward negative values, with
mean � �0.49, standard deviation � 1.4, and 95% confidence
interval � �3.2–2.2 (Fig. S1). In subsequent analyses, each nano-
particle is represented by a profile of 64 features consisting of the
assay Z scores for all possible combinations of dose, cell type and

assay as described in the Introduction (and corresponding to
individual columns in the heat map in Fig. 1).

Multiple Assays and Cell Types Enrich Nanomaterial Biologic Activity
Profiles. The activity profiles for the vast majority of nanopar-
ticles reveal a heterogeneous range of responses (Fig. 1). This
suggests that data from a single cell type or assay may not reflect
all of the biologic information captured by the full activity
profile.

To quantitatively test this hypothesis, we asked whether the
correlation between the activity profiles of any two nanoparticles
changes significantly when we vary the number of assays or cell
types in the analysis. We calculated all possible pairwise correla-
tions between nanoparticles, using the full complement of 64
features per particle (i.e., all doses, cell types, and assays in the
complete dataset). We then recalculated these pairwise correla-
tions for all possible subsets of the dataset (e.g., including only data
from one, two, or three assays, or one, two, or three cell types).
Finally, we assessed how correlations between nanoparticles in a
given data subset correlated with those in the complete dataset.

In general, the degree of correlation with the complete dataset
improves progressively as one increases the number of assays in the
analysis from 1 to 4 (Fig. 2a). Data subsets that use one, two, or
three assays show a progressive and statistically significant increase
in correlation with the complete dataset (P � 0.0005 for ANOVA;
P � 5.5 � 10�4, 5.5 � 10�4, and 0.048 for subsets including one, two,
or three assays, respectively) (Fig. 2b). Thus, the relationships
between nanoparticles change significantly as one moves from one
assay to four assays. Analogous results ensue when the number of
cell types included in the analysis is varied (Fig. 2 c and d; P � 0.0001

Fig. 1. Determining biologic activity of nanoparticles. The heat map displays
Z scores for each nanoparticle (in columns) under 64 different conditions (in
rows, all combinations of four doses � four cell types � four assays). Wedge
shapes indicate increasing nanoparticle dose. AO, aorta endothelial cell; SM,
vascular smooth muscle; HEP, hepatocyte; MP, monocyte/macrophage; Apo,
apoptosis assay; Mito, mitochondrial potential assay; Red, reducing equiva-
lents assay; ATP, ATP content assay.

Fig. 2. Comparison of nanoparticle activity profiles in the complete dataset
vs. data subsets. (a) Correlation between complete dataset and subsets that
include varying numbers (and combinations) of assays. Columns and rows are
named according to the number (1, 2, 3, or 4) and names of the assays included
in the subset. (b) Scatter plots of Pearson correlations between the complete
dataset and subsets that include one, two, or three assays. Each point repre-
sents the correlation value between the complete dataset and a specific
combination of assays. (c) Correlation between complete dataset and subsets
that include varying numbers (and combinations) of cell types. (d) Scatter plot
of Pearson correlations between the complete dataset and subsets that in-
clude one, two, or three cell types. Assay and cell type abbreviations are the
same as in Fig. 1.
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for ANOVA; P � 9.5 � 10�4, 2.0 � 10�4, and 0.018 for subsets
including one, two, or three cell lines, respectively). Together, these
results argue that our ability to detect relationships among nano-
particles (i.e., similarity or differences in their biologic effects) is
significantly enhanced by evaluating them in multiple different
cellular assays and cell types. Interestingly, at a given number of
assays, those combinations that include the apoptosis assay are
ranked the highest (i.e., are the most similar to the complete
dataset) (Fig. 2a), suggesting that it may contribute more to the
nanoparticle correlations than the other assays.

Hierarchical Clustering and Class Prediction of Nanoparticles Based on
Biological Activity. We performed unsupervised hierarchical and
consensus clustering to group the nanoparticles based on their
activity profiles and investigate how nanomaterial composition
influences biologic activity. Consensus clustering increases the
robustness of hierarchical clustering by iteratively repeating the
hierarchical clustering algorithm, each time subsampling the data;
the output of consensus clustering is the fraction of clustering runs
in which any two samples (nanoparticles) cluster together (18). The
greater the coclustering frequency, the more robust the putative
clusters are, and the more likely it is that the clusters reflect some
true underlying structure within the dataset.

Hierarchical clustering analysis (using the Pearson correlation)
divides the 50 nanoparticles into three main groups or clusters (Fig.
3a). Overall, the nanoparticles show very divergent activity profiles.
For instance, the correlation value for the top node in the cluster
diagram is 0.06; the correlation for the node joining cluster III with
the cluster I/cluster II branch is 0.11; in comparison, the top nodes
defining clusters I, II, and III have correlation values ranging from
0.22 to 0.30. Within each cluster, subsets of related nanoparticles
have highly correlated profiles. For instance, the correlation be-
tween NP50 and NP51 (cluster II), replicates of the same carboxyl-
modified quantum dot, is 0.93; furthermore, all three quantum dot
samples (NP 49–51) cluster closely together, subtended by a node
with a correlation of 0.83 (Fig. 3 a and b and Table S1). Similarly,
cluster I contains a highly correlated cluster (correlation value �
0.76) that contains the two nanoparticles approved for human use
(NP24, Feridex, and NP25, Ferrum Hausmann), and a series of

nanoparticles (NP45–NP48) based on a platform that has com-
pleted phase III clinical trials (Combidex or Ferumoxtran-10) (Fig.
3 a and c and Table S1). In addition to these functionally meaningful
groupings, each cluster also contains more than one nanoparticle
platform and a variety of surface modifications. The heterogeneity
within each cluster suggests that biologic activity arises from the
combined effects of many aspects of nanoparticle composition and
is therefore difficult to predict a priori. Taken together, these data
suggest that the nanoparticle collection causes a diverse range of
biologic responses but that our methodology yields high correlation
values for nanoparticles that share physical, chemical, or biological
properties.

We tested whether the nanoparticles’ activity profiles encode
sufficient information to correctly assign them to the correct cluster
(‘‘class prediction’’). We selected clusters I and II for this test,
because they are the largest clusters of relatively symmetric size (24
and 20 members, respectively); this also constituted the most
demanding test, because clusters I and II are the most highly
correlated pair among the three clusters. We first randomly divided
the nanoparticles into a training and testing set (each containing 22
nanoparticles, stratified by membership in cluster I vs. cluster II).
We then analyzed the training set to select features that best
discriminate between cluster I vs. cluster II (‘‘class predictor’’) and
applied the class predictor to assign nanoparticles in the testing set
to either cluster I or cluster II. Using three different class prediction
algorithms [classification and regression trees, k-nearest-neighbors,
and weighted voting], we were able to predict membership in cluster
I vs. II with impressive accuracies of 20/22 (0.91), 18/22 (0.82), and
19/22 (0.86), respectively. Of note, when we included zeta potentials
(a widely used measure of the electrostatic potential at the nano-
particle surface double layer) as a feature for each nanoparticle, the
zeta potential did not distinguish between cluster I vs. II compared
with other features (Fig. S2 a and b).

Structure–Activity Relationships Revealed Through Clustering Analy-
sis. The large number of nanoparticles in our dataset allows us to
study how specific changes in nanoparticle composition affect their
biologic activity. For instance, particles NP26, NP27, NP31, and
NP32 represent all four possible combinations of two cores (su-
perparamagnetic vs. paramagnetic iron oxide), and two surface
modifications (ethylene diamine vs. carboxylic acid; see Table 1 and
Table S1). In the original dataset, NP26 and NP27 fall in cluster I,
and NP31 and NP32 fall in cluster III (Fig. 3a). If these four particles
are reanalyzed together, consensus clustering indicates that NP26
and NP27 consistently cluster together (coclustering frequency � 1)
despite their very different surface modifications (e.g., a carboxylic
acid vs. the relatively basic ethylene diamine), and that NP31 and
NP32 similarly cluster together (coclustering frequency � 1) (Fig.
4a); similar conclusions are reached by conventional hierarchical
clustering of these four nanoparticles (Fig. S3a). These data suggest
that, at least for this series of nanoparticles, the core composition
can exert a strong and somewhat unanticipated influence on
biologic activity.

We extended this analysis to compare eight nanoparticles con-
jugated to a series of basic peptides [protamine, poly-L-arginine or
poly-D-arginine); they also contain different carbohydrate coatings,
and either Fe3O4 or Fe2O3 cores (Table 1). [Nanoparticles bearing
basic peptides on their surface can enter a wide variety of cell types
and thus serve as universal cell trackers in vivo (19).] In the original
dataset, the eight nanoparticles are distributed across clusters I, II,
and III (Fig. 3a). Reanalysis classifies these particles into four
groups (Fig. 4b and Fig. S3b), determined to a significant extent by
their surface modifications. Thus, the protamine-conjugated nano-
particles (NP11, NP19, NP23, NP29, and NP38) make up two
clusters, largely corresponding to the underlying CLIO vs. PNP
platforms (Table 1 and Table S1). The two poly-L-arginine-
modified nanoparticles (NP30, NP39) comprise a third group, and
the poly-D-arginine-modified nanoparticle (NP42) is a singleton.

Fig. 3. Hierarchical clustering of nanoparticles based on activity profiles. (a)
Heat map depicting hierarchical clustering of nanoparticle biological activity
in the entire dataset. Z scores are depicted in each cell; nanoparticle labels are
color-coded to reflect their underlying platform (Table S1). Numbers adjacent
to nodes in the dendrogram indicate the correlation value for that node, with
the correlation scale along the left. (b) Dendrogram of a subcluster containing
all three quantum dots (NP 49–NP51) (see Table 1 and Table S1). (c) Dendro-
gram of hierarchical clustering of two nanoparticles in our dataset approved
for human use (NP24, Feridex IV, and NP25, Ferrum Hausmann) and four
MION-based nanoparticles (NP45–NP48) (see Table 1 and Table S1).
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Note that our analysis clearly separates poly-D- vs. the diastereo-
meric poly-L-arginine-modified nanoparticles (Fig. 4b and Fig.
S3b), demonstrating the high sensitivity with which we can detect
the biologic consequences of subtle surface modifications.

In Vitro Relationships Among Nanoparticles Correlate with in Vivo
Activity. We hypothesize that nanomaterials that cluster close
together in our in vitro analysis should also have similar in vivo
activity; conversely, nanomaterials that cluster into different
classes should have disparate in vivo activities. We selected
three commonly used nanoparticles from our in vitro experi-
ments to test these hypotheses in a murine model: (i) Feridex
IV (NP24), which is FDA-approved as an intravascularly-
administered imaging agent and has shown minimal in vivo
toxicity in rats (20) or humans (21); (ii) CLIO-NH2 (NP3); and
(iii) Qdot-NH2-PEG (NP49). Each of these nanoparticles
differs in their core composition, coating, and surface func-
tionalization (Table 1 and Table S1). Hierarchical clustering
analysis of our in vitro data places Feridex IV (NP24) and
CLIO-NH2 (NP3) very close to each other in the same group
(Fig. 3a and Fig. S3c), and they cause very similar assay
measurements across all conditions tested (Fig. 5a). In con-
trast, Qdot-NH2-PEG (NP49) clusters in a distinct group from
Feridex IV (NP24) and CLIO-NH2 (NP3) (Fig. 3a and Fig.
S3c) and shows a distinct assay response profile. In particular,

the apoptosis and reducing equivalent assays reveal marked
differences in effects induced by Qdot-NH2-PEG (NP49) vs.
either Feridex IV (NP24) or CLIO-NH2 (NP3) (Fig. 5b).
(Conversely, the ATP and mitochondrial potential assays fail
to distinguish Qdot-NH2-PEG (NP49) from the other two
nanoparticles, illustrating how a wider variety of assays can
reveal differences in activity that might otherwise remain
undetected.)

All three of these agents are widely used in vivo in animal models
(and, in the case of Feridex IV, in humans) without obvious
evidence of gross end-organ toxicity, suggesting that our in vitro
clustering analysis reflects a relatively subtle phenotypic distinction
between Feridex IV and CLIO-NH2 in one class and Qdot-NH2-
PEG in another. We chose to examine the in vivo effects of these
nanoparticles on the monocyte population after a brief exposure for
a number of reasons: (i) alterations in leukocyte subsets, including
increased monocyte fraction, can be a sign of proinflammatory or
other toxic exposures (22, 23), (ii) monocytes are phagocytic, and
take up certain nanoparticles more than many other cell types (14),
and (iii) nanomaterials have been shown to cause pleiotropic effects
on immune cells that are very sensitive to the materials’ composi-
tion and surface (24).

Table 1. Brief summary of core and surface modifications for nanoparticles discussed in Figs. 4–6

Particle Type Core Surface Fig.

NP26 PNP Fe3O4 -COOH 4a
NP27 PNP Fe3O4 ethylene diamine 4a
NP31 PNP Fe2O3 -COOH 4a
NP32 PNP Fe2O3 ethylene diamine 4a
NP23 CLIO Fe3O4 VT680, protamine 4b
NP11 CLIO Fe3O4 Cy5.5, protamine 4b
NP19 CLIO Fe3O4 rhodamine, protamine 4b
NP29 PNP Fe3O4 rhodamine, protamine 4b
NP38 PNP Fe2O3 rhodamine, protamine 4b
NP39 PNP Fe2O3 (L)-arg7-COOH 4b
NP30 PNP Fe3O4 (L)-arg8-COOH 4b
NP42 PNP Fe2O3 (D)-arg7-COOH 4b
NP24 Feridex Fe3O4 (polydisperse) incomplete dextran 5 and 6
NP3 CLIO Fe3O4 (monodisperse) complete dextran, -NH2 5 and 6
NP49 Qdot CdSe PEG, -NH2 5 and 6

Full details may be found in Table S1. �Type� refers to the nanoparticle classifications used in Fig. 3 and the main text.

Fig. 4. Structure–activity relationships based on activity profiles. (a) Heat
map showing results of consensus clustering for NP26, NP27, NP31, and NP32
(Table 1). The color of each cell and the number within each cell reflect the
fraction of iterative clustering runs in which two particles cluster together. (b)
Heat map showing results of consensus clustering for eight nanoparticles that
bear different basic peptides on their surface (Table 1).

Fig. 5. In vitro activity profiles for three commonly used nanoparticles
(CLIO-NH2, Feridex IV, and Qdot-NH2-PEG) across all experimental conditions
(combinations of dose, cell type, and assay). (a) Z score profile for CLIO-NH2

and Feridex IV, showing similar Z scores across all conditions. (b) Z score
profiles for Feridex IV vs. Qdot-NH2-PEG (Upper) and CLIO-NH2 vs. Qdot-NH2-
PEG (Lower). Divergent Z scores between nanoparticles are observed only with
the apoptosis and reducing equivalents assays (orange).

7390 � www.pnas.org�cgi�doi�10.1073�pnas.0802878105 Shaw et al.
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We quantitated blood and splenic monocytes by flow cytometry
as described in ref. 25 2.5 h after i.v. injection of nanoparticles. (We
chose an early time point to allow measurement of cellular effects
before cells in the periphery are replaced by bone marrow progen-
itors, and specifically included splenic monocytes because they are
an important source of marginating monocytes that exchange with
the circulating pool.) In the spleen, Qdot-NH2-PEG causes a
significant increase in the monocyte fraction (0.89 � 0.08) com-
pared with either Feridex IV or CLIO-NH2 (0.43 � 0.15, 0.48 �
0.06; P � 0.0030 for ANOVA), both of which are comparable with
control (buffer alone) (Fig. 6 a and b). Consistent with our in vitro
clustering results, Feridex IV and CLIO-NH2 cause similar effects
on monocytes in vivo (P � 0.05), and Qdot-NH2-PEG causes a
distinct effect (P � 0.01 vs. either Feridex IV or CLIO-NH2). The
same trend is evident in peripheral blood, with a dramatically
increased monocyte fraction induced by Qdot-NH2-PEG (2.87 �
1.92) compared with Feridex IV or CLIO-NH2 (0.62 � 0.56, 0.34 �
0.03; P � 0.069 for ANOVA) (Fig. 6 a and c). None of the
nanoparticles causes a significant increase in acute necrotic or
apoptotic cell death at the concentrations tested, as assessed
through propidium iodide uptake or annexin V binding (data not
shown).

Discussion
This work suggests a generalizable and scalable method for the
systematic characterization and comparison of novel nanomateri-
als. Here, we show that the incorporation of multiple assays and cell
types leads to different correlations among nanoparticles (Figs. 2
and 5). We also show that hierarchical clustering of activity profiles
places nanoparticles in functionally meaningful groupings, such as
a cluster containing nanoparticles that are either FDA-approved, or
are close analogs of nanoparticles that have completed phase III
clinical trials (Fig. 3 a and c). Detailed structure–activity relation-
ships result from the study of related nanomaterials, including
instances where the activity profiles are dominated by either core
composition (Fig. 4a) or surface modifications (Fig. 4b); the power
of our approach to distinguish subtle alterations in composition is
exemplified by the distinct activity profiles of nanoparticles differing
only by diastereomeric peptide modifications (Fig. 4b and Fig. S3b).

To our knowledge, this is the largest evaluation of nanoma-
terials in the literature to date, involving data on 50 nanoparticles
collected from �24,000 wells. The ability to evaluate nanoma-
terials in high-throughput is helpful given the vast number of
possible compositions and enables detailed structure–activity

relationships to emerge from the study of families of closely
related materials, using multiple assays and cell types. Although
we chose four assays and cell types for these proof-of-concept
experiments, the optimal number and choice of assays and cell
types for future applications remains to be determined. For
instance, to investigate nanomaterials where the primary route
of exposure was by inhalation, one might consider including
bronchial or alveolar epithelial cells among the cell types studied.
A wide variety of assays could also be contemplated, such as
measures of DNA replication or in-plate Western blots assessing
the phosphorylation state of specific proteins; as the cost of
measuring genome-wide gene expression decreases, it may be-
come feasible to systematically characterize nanomaterials based
on gene expression. It is not yet clear whether different appli-
cations require unique assay and cell type choices or whether a
certain repertoire would be sufficiently orthogonal for most
applications; the analyses outlined here can guide the selection
of a suite of assays and cell types that efficiently extracts
informative data for any collection of nanomaterials to be tested.

We characterize nanomaterials based on their activity profile,
which incorporates data from several cell-based assays and cell
types; these profiles then become the unit of analysis as we group
or classify nanoparticles according to their patterns of activity. This
profile-based approach is fundamentally distinct from prior efforts
to characterize nanomaterials in vitro. For instance, a profile-based
analysis samples a much wider swath of biology and should be less
sensitive to any peculiarities of a particular cell line or assay. Equally
important, our analysis does not seek to directly extrapolate from
an in vitro assay to an in vivo phenotype; previous attempts at such
extrapolation have been problematic for several potential reasons
(e.g., altered cellular phenotypes during tissue culture, or interac-
tions of the nanoparticles with the culture media). Because our
analysis compares biologic activity across nanoparticles (all of which
are analyzed under uniform media and culture conditions), we can
still draw conclusions as to similarities or differences among nano-
particles based upon our in vitro data.

Our emphasis on comparing across nanomaterials becomes
increasingly useful as the number of well characterized reference
nanomaterials (such as the FDA-approved Feridex IV) grows,
because it allows the generation of testable hypotheses, namely, that
nanomaterials that cluster close together with FDA-approved
agents in vitro may also exhibit similar behavior in vivo. We tested
this hypothesis by intravenously injecting three commonly used
imaging nanomaterials of varying composition (Feridex IV, CLIO-
NH2, and Qdot-NH2-PEG) (Table 1 and Table S1) and examining
the monocyte fraction. These data show that similarities and
differences in activity in vitro are borne out in vivo, at least for the
nanoparticles tested. Although an increase in monocytes (such as
that induced by Qdot-NH2-PEG) has been associated with toxic
exposures (22, 23), further studies are needed to clarify if the
changes in monocyte level after Qdot-NH2-PEG exposure corre-
late with other immune or adverse phenotypes.

An intriguing question raised by our data are whether a profile-
based approach could provide an in vitro filter to help identify
promising compounds for in vivo testing. More specifically, could
one identify novel nanomaterials that are likely to have favorable in
vivo safety based on in vitro activity profiles that are similar to an
FDA-approved material? Answering this question requires empir-
ically optimizing in vitro assays and cell types and analytic methods,
but the overall approach outlined in this report could serve as a
template for these efforts. As the development of nanomaterials for
a wide range of applications continues to accelerate, this approach
could provide a powerful tool to guide the development and toxicity
evaluation of future nanomaterials.

Methods
Cell Types. Endothelial cells (human aorta) and vascular smooth muscle cells
(human coronary artery) were purchased from Cambrex and were grown in

Fig. 6. Effect of intravenously administered nanoparticles on monocyte
fractions in vivo. (a) FACS analysis on representative individual spleen or blood
samples after nanoparticle treatment. The fraction of cells that are monocytes
(defined as CD11bhi [CD90/B220/CD49b/NK1.1/Ly-6G)lo cells] is indicated. (b)
Monocyte fractions observed in the spleen after treatment with nanopar-
ticles. (c) Monocyte fractions observed in peripheral blood. Values shown are
the mean and standard deviation from measurements on three mice.
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EBM-2 and SmBC media (Cambrex), respectively. Hepatocytes (human HepG2
cells) were grown in CellGro MEM plus 10% FBS, 2 mM sodium pyruvate and
1% penicillin/streptomycin (pen/strep). The murine RAW 264.7 leukemic
monocyte/macrophage cell line was grown in CellGro DMEM plus 10% FBS, 2
mM L-glutamine and 1% pen/strep.

Cell-Based Assays. Cells were plated into 384-well plates and incubated over-
night; nanoparticles were incubated for 4 h in a total volume of 30 �l. [Pilot
experiments showed that a 4-h incubation was sufficient to allow differences in
nanoparticles to become apparent without causing nondiscriminate cell death at
the highest doses tested (data not shown). Thus, the 4-h time point was chosen
to elucidate similarities and differences among nanoparticles and not as an
attempt to model some physiologic time of exposure.] Nanoparticle final con-
centrations were 0.01, 0.03, 0.1, and 0.3 mg/ml Fe for iron-based nanoparticles to
encompass intravascular concentrations achieved during human studies (e.g., a
widely cited study injected an intravascular nanoparticle imaging agent (Combi-
dex) at 2.6 mg/kg Fe; assuming a weight of 70 kg and an intravascular volume of
5 l, this corresponds to an intravascular dose of �0.03 mg/ml Fe (26). Quantum
dots were tested at final concentrations of 3, 10, 30, or 100 nM, which encompass
a range from �1–50� doses used for in vitro- (27) or in vivo- (28) labeling
experiments. The JC1 (mitochondrial membrane potential) (Molecular Probes),
CellTiter-Glo (ATP content; Promega), Apo-ONE Caspase-3/7 (apoptosis; Pro-
mega), and C12-resazurin (reducing equivalents; Molecular Probes) assays largely
followed manufacturer instructions, and nanoparticles were excluded from anal-
ysis if their intrinsic fluorescence interfered with an assay (details are in SI
Methods).

Coefficientsofvariation{%CV� [(SD)/	n]/mean�100,wheren�4replicates
per condition} for the four assays were: JC1 9%, CTG 5%, Apo-ONE 6%, and
C12-resazurin 10%, which are well within assay guidelines published by the
National Institutes of Health Chemical Genomics Center (29). Each experimental
condition was analyzed in quadruplicate and compared with 172 control wells
(containing PBS) on the same plate. Z scores for each nanoparticle condition (ZNP)
were calculated as: ZNP � (�NP � �PBS)/�PBS, where � and � are the mean and
standard deviation, respectively.

In Vivo Monocyte Analysis. Protocols were approved by the animal care and use
committee of the Massachusetts General Hospital and Center for Molecular
ImagingResearch.BALB/cmicereceivedintraorbital i.v. injectionsofagents in100
�l of PBS: 20 mg/kg CLIO-NH2; 160 pmol of QDot-NH2-PEG, 20 mg/kg Feridex, or
none (PBS). Two hours and 30 min later, white blood cells were purified from
peripheral blood and spleen as described in ref. 25. Single cell suspensions were
labeled with appropriate markers to identify monocytes [e.g., CD11bhi (CD90/

B220/CD49b/NK1.1/Ly-6G)lo cells] by flow cytometry (25). Cells were analyzed for
Annexin V binding and propidium iodide uptake (30). Mean monocyte levels
were measured in three mice per agent and compared by using one-way ANOVA
and the Bonferroni multiple comparisons test for posttest comparisons.

Nanoparticle Synthesis and Characterization. Table S1 lists the coating, surface
modification, size, relaxivities, zeta potential, and source/citation for the nano-
particles tested. Nanoparticle size and zeta potential were measured by using a
Zetasizer 1000 (Malvern Instruments); relaxivities were determined by using a
Bruker Minispec MQ20 NMR.

Clustering Analysis. Hierarchial and consensus clustering and class prediction
analyses used the appropriate modules in GenePattern 3.1 (31). For hierarchi-
cal clustering, pairwise average linkage clustering was used; nanoparticles
were clustered by using Pearson correlation and assay conditions were clus-
tered by using Euclidean distance; other analyses used default parameters.
Details are in SI Methods.

Correlations Between Data Subsets. For each data subset, we calculated the
pairwise Pearson correlation between all possible combinations of the 50 nano-
particles, based on their Z score profiles across combinations of dose, cell type,
and assay. This generates 15 (50 � 50) matrices (whose elements are the pairwise
Pearsoncorrelations),oneforeachdatasubset (1combinationoffourassays, four
combinationsofthreeassays, sixcombinationsoftwoassays,andfourwaystouse
one assay). We then calculated the pairwise Pearson correlations between these
fifteen50�50matrices, resultinginasingle15�15matrix inwhicheachelement
reflects the correlation between two data subsets. Finally, we calculated the
average correlation with the complete (four-assay) dataset for all datasets incor-
porating one, two, three, or four assays; these were compared using a one-way
ANOVA; the correlation for subsets using three, two, or one assays was compared
with 1 (the correlation of the complete dataset with itself), using a one-sided,
one-sample t test. An analogous analysis was performed for data subsets that use
varying numbers of cell types.
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